7 research outputs found

    Modeling of Solar Cells and Environmental Conditions for Space Microgrids

    Get PDF

    An Accurate Physical Model for PV Modules with Improved Approximations of Series-Shunt Resistances

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An accurate model to represent the photovoltaic modules is essential to facilitate the efficient deployment of these systems in terms of design, analysis, and monitoring considerations. In this respect, this study proposes a new approach to improve the accuracy of the widely used five-parameter single-diode model. Two new physical equations are introduced to represent the series and shunt resistances, while the other parameters are represented by well established physical expressions. In the proposed model, most of the parameters are in terms of the cell temperature, irradiance, and datasheet values, while a few parameters need to be tuned. The model is compared with four well-known methodologies to extract the parameters of the single-diode and double-diode models. The simulation studies make use of the different I-V characteristics provided in the photovoltaics (PVs) datasheets, characteristics extracted from an outdoor module, as well as the ones simulated with the software PC1D. The results show an improved precision of the proposed model to estimate the power characteristics for a wide range of temperatures and irradiances, not only in the maximum power point but also in the whole range of voltages. Furthermore, the proposed physical model can be easily applied to other kind of studies where a physical meaning of the PV parameters is of great importance.Peer ReviewedPostprint (author's final draft

    Space Microgrids for Future Manned Lunar Bases: A Review

    Get PDF
    corecore